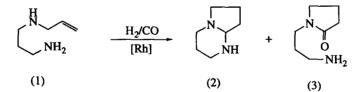
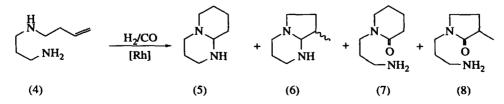


PII: S0040-4039(97)00889-7

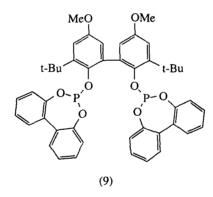

Control of Chemo- and Regio-Selectivity in Rhodium Catalysed Reactions of Unsaturated Amines with H₂/CO

David J. Bergmann, Eva M. Campi, W. Roy Jackson, Quentin J. McCubbin and Antonio F. Patti


Department of Chemistry, Monash University, Clayton, Victoria 3168, Australia

Abstract: The rhodium catalysed reactions of N-allyl- and N-butenyl-1,3-diaminopropanes give single products arising from exclusive hydroformylation at the terminal carbon when the hindered bisphosphite ligand, BIPHEPHOS is used. Reactions using a high carbon monoxide : hydrogen ratio (9:1) and triphenylphosphine as ligand give predominantly lactams arising from carbonylation but with poor control of regioselectivity. © 1997 Elsevier Science Ltd.

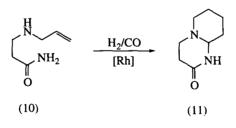
Aliphatic polyamines such as spermine and spermidine are widely distributed in nature and their oxdation products have been the subject of both physiological and pharmacological interest.¹ Enzymatic and chemical oxidation can lead to formation of either bicyclic heterocycles, e.g. $(2)^2$ or lactams, e.g. (3).¹


An attractive general route to these classes of compounds involves hydroformylation/cyclisation or carbonylation of alkenyl-1,3-diaminopropanes, e.g. the N-allyl compound (1). However, in general, rhodium catalysed reactions of unsaturated amines with H₂/CO often give mixtures of isomers resulting from low chemo- and regioselectivity.^{3,4} Thus, e.g. although rhodium-catalysed reaction of (1) with H₂/CO, 1:1 using PPh₃ as ligand is regiospecific an almost equimolar mixture of products arising from hydroformylation (2) and carbonylation (3) is obtained (Table 1). The problem is more acute in reactions of the homologous N-butenyl compound (4) which under similar conditions gives a mixture of four products, two regioisomers (5) and (6) arising from hydroformylation and two (7) and (8) from carbonylation. (Table 2)

Ligand	Ratio H2/CO	Product Distribution		
		Hydroformylation (2)	<u>:</u>	Carbonylation (3)
PPh ₃	1:1	40	:	60
PPh ₃	9:1	95	:	5
BIPHEPHOS	1:1	100	:	-
PPh ₃	1:9	10	:	90
P(o-tol)3	1:1 or 1:9	15	:	85

Table 1. Effect of Ligand Variation and Gas Ratio on Chemoselectivity of Reaction of (1)

We wish to report that use of the hindered bisphosphite, BIPHEPHOS (9)^{5,6} as ligand gives complete control of both chemo- and regioselectivity. Thus reaction of (4) with H_2/CO (1:1) using [Rh(OAc)₂]₂ and BIPHEPHOS (9) gave only the product (5) resulting from terminal hydroformylation in quantitative yield.⁷


Similarly reaction of the N-allyl compound (1) using BIPHEPHOS was now chemospecific and only the bicyclic heterocycle (2) was obtained, again in quantitative yield. The high regioselective preference for terminal hydroformylation of a range of alkenes using BIPHEPHOS as ligand has been reported previously⁶ and has been applied to the synthesis of indolizidine and pyrrolizidine alkaloids.⁸ The dramatic change in chemoselectivity has not been noted previously. High chemoselectivity for hydroformylation products (\geq 95%) could also be achieved by using triphenylphosphine as a ligand but with a H₂/CO gas ratio of 9:1. However, the regioselectivity of the products from the reaction of (4) was now only 70:30 for (5):(6). an alternative method of achieving high selectivity for hydroformylation products (\geq 95%) involved the use of more basic phosphines, e.g. Bu₃P or (C₆H₁₁)₃P but again regioselectivity was no greater than 75% of (5). In contrast, the reaction of (4) using BIPHEPHOS with H₂/CO gas ratios of 9:1, 1:1 or 1:9 gave in all cases only hydroformylation products and only with 9:1 H₂/CO was *ca*. 5% of the branched isomer (6) obtained; both reactions using 1:1 and 1:9 H₂/CO gave exclusive terminal product.

Ligand	Ratio H2/CO	Product Ratio	Ratio of isomers		
		Hydroformylation (5,6) : Carbonylation (7,8)	Hydroformylation linear (5) : branched (6)	Carbonylation linear (7) : branched (8)	
PPh ₃	1:1	60 : 40	85 : 15	25 : 75	
PPh ₃	9:1	≥95 : ≤ 5	70 : 30	-	
PBu ₃	1:1	> 95 : < 5	75 : 25	-	
P(C ₆ H ₁₁) ₃	1:1	> 95 : < 5	65 : 35	-	
BIPHEPHOS	1:1	100 : 0	100 : 0	-	
PPh ₃	1:9	20:80	>95 : < 5	55 : 45	
P(o-tol)3	1:1 or 1:9	5 : 95	95 : 5	30 : 70	

Table 2. Effect of Ligand Variation and Gas Ratio on Chemo- and Regioselectivity of Reaction of (4)

Attempts to increase the chemoselectivity in favour of carbonylation first involved increasing the CO/H_2 ratio to 9:1, a method previously used successfully by Ojima and his co-workers.³ Reaction of (1) using this gas mixture with Ph₃P as ligand gave a 90:10 ratio of (3):(2) and a reaction of (4) gave a ratio of 80:20 of carbonylation ((7) and (8)) to hydroformylation ((5) and (6)) products. Use of tris-o-tolylphosphine as ligand with CO/H₂ ratios of either 1:1 or 9:1 gave higher selectivities for carbonylation, 85% from (1) and 95% from (4) but in all of these reactions regioselectivity was at best moderate ranging from 30(7):70(8) to no selectivity at all.

The above methodology was applied successfully to the preparation of 1,5-diaza-6-oxobicyclo[4.3.0]nonane (11) from the *N*-allylaminopropanamide (10). This compound has potential for further functionalisation and conversion into interesting multi-ring heterocycles.

ACKNOWLEDGEMENTS

We thank the Australian Research Council for support and postgraduate awards (to Q.J.McC. and D.J.B) and Johnson Matthey Pty Ltd for a loan of rhodium.

REFERENCES AND NOTES

- 1. Seiler, N.; Knodgen, B. Int. J. Biochem. 1983, 15, 907-915.
- 2. Croker, S.J.; Loeffler, R.S.T.; Smith, T.A.; Sessions, R.B. Tetrahedron Lett. 1983, 24, 1559-1560; Brandänge, S.; Eriksson, L.-H.; Rodriquez, B. Acta. Chem. Scand. 1984, 6, 526-528.
- 3. Zhang, Z.; Ojima, I. J. Organomet. Chem. 1993, 454, 281-289.
- 4. Zhou, J.-Q.; Alper, H. J. Org. Chem. 1992, 57, 3328-3331.
- 5. Billig, E.; Abatjoglou, A.G.; Bryant, D.R. U.S. Patents 4,668,651 (1987) and 4,769,498 (1988).
- 6. Cuny, G.D.; Buchwald, S.L. J. Am. Chem. Soc. 1993, 115, 2066-2068.
- 7. Typical procedure for hydroformylation of amine (1) involved stirring a solution of rhodium(II) acetate dimer (5.8 mg, 0.013 mmol), PPh₃ (13.0 mg, 0.057 mmol) and the amine (1) (300 mg, 2.6 mmol) in benzene (10 ml) in a 100 ml stainless steel Parr autoclave pressurised to 400 psi with H₂/CO (1:1 molar ratio) and heated to 80°C for 20 h. After cooling and releasing the pressure, the soluton was concentrated and analysed by ¹H and ¹³C n.m.r. spectroscopy. The products were separated and purified by distillation to give the bicyclononane (2) as an oil. The lactam (3) was isolated as its acetamide by acetylation of the distillation residue.
- 8. Cuny, G.D.; Buchwald, S.L. Synlett 1995, 519-522.

(Received in UK 21 April 1997; accepted 2 May 1997)